Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dey, Jagriti"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Prediction of insulation sensitive parameters of power transformer using detrended fluctuation analysis based method
    (IEEE, 2022-06) Dutta, Saurabh; Dey, Jagriti; Mishra, Deepak; Baral, Arijit; Chakravorti, Sivaji
    Utilities prefer to perform a condition-based assessment of power transformer insulation in the least possible shutdown time. It is essential to estimate the values of various insulation condition sensitive performance parameters with higher accuracy. In the present work, a technique for the estimation of performance parameters, moisture content of paper, dissipation factor of the entire oil-paper insulation, paper conductivity, and activation energy is proposed. The evaluation of these parameters using reported techniques requires complete measurement of polarization and depolarization current profile, which requires around 20000 s of measurement time. The present method uses a forecasted polarization current profile obtained from 600 s of measured polarization current data. Detrended Fluctuation Analysis is applied to the forecasted polarization current data obtained from various in-service power transformers to obtain a suitable parameter. It is shown that this parameter maintains well-defined relationships with parameters; moisture content of paper, dissipation factor of oil-paper insulation, paper conductivity, and activation energy. The proposed technique is beneficial for utilities as it eliminates the requirement of measuring depolarization current and return voltage measurement for estimating activation energy.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify