Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Edara, Gautam."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    null.listelement.badge
    Combustion analysis of modified light duty diesel engine under high pressure split injections with cooled EGR
    (Engineering Science and Technology, an International Journal, 2019) Edara, Gautam.; Satyanarayana Murthy, Y. V. V.; Nayar, Jayashri.; Ramesh, Merigala.; Srinivas, Paleti.
    The aim of the present research work is to study the combustion phenomenon in modified light duty diesel engine to run on Common rail direct injection (CRDI) system under cooled exhaust gas recirculation (EGR). The test engine is single cylinder 3.7 kW@1500 rpm direct injection diesel engine capable of injecting high pressure fuel for both retarded and split injections. The engine is fitted with separate electronic variable timing fuel injection kit instead of conventional fuel supply system. Retarded injection consists of single injection at 11 before top dead centre (BTDC) and split injection consists of both pilot injection at 54 BTDC of 10% mass share and main injection at 11 BTDC of 90% mass share. Diesel is injected directly in to the engine cylinder for both retarded and split injections at pressures of 200,230,250,300 and 350 bar respectively. Cooled EGR is circulated along with intake air for flow rates of 5% and 10% (wt/ wt) basis. The experimental set up is capable of delivering precise control of fuel and EGR flow rates at all operating conditions. Test results show that there is trade-off exists between retarded and split injections at 350 bar injection pressure at full load conditions. Retarded injection has 34% brake thermal efficiency while split injection exhibits only 32.1% for 5% EGR flow rates. But higher EGR flow rates of 10% both retarded and split injection has nearly same brake thermal efficiency of 30.1%. Split injection reduced the combustion duration, ignition delay and exhaust gas temperatures for higher EGR flow rates compared to single retarded injection.
  • No Thumbnail Available
    null.listelement.badge
    Effect of cooled EGR on modified light duty diesel engine for combustion, performance and emissions under high pressure split injection strategies
    (Case Studies in Thermal Engineering, 2018) Edara, Gautam.; Satyanarayana Murthy, Y. V. V.; Srinivas, Paleti.; Nayar, Jayashri.; Ramesh, Merigala.
    Environmental concerns demands light duty Engines to satisfy the stringent Euro VI emission norms. The aim of this study is to present the effect of cooled exhaust gas recirculation (EGR) on emission reduction. Tests are conducted on a modified single cylinder light duty diesel engine to run on high pressure common rail direct fuel injection. Diesel is injected directly in to the engine cylinder for both retarded and split injections at pressures of 200, 230, 250, 300 and 350 bar respectively. Cooled EGR is circulated along with intake air in to the inlet manifold of the engine for flow rates of 5% and 10%( wt/wt) of injected air respectively for both retarded and split injections. Single injection is retarded at−11° ATDC and split injection consists of pilot injection at −54°ATDC of 10% mass share and main injection at −11°ATDC of 90% mass share. The result shows split injection (MPFI) decreases the ignition delay, In-cylinder combustion temperature and peak pressure for higher EGR flow rates compared to retarded single injection (SI) for all Injection pressure. Split injection reduced NOx from 1400 ppm to 200 ppm for 10% EGR flow rate at 350 bar injection pressure at full load operating conditions. Split injection at high Injection pressure decreases smoke by 10% as compared to retarded single injection. Test results show that there is trade-off exists between retarded and split injections at 350 bar injection pressure at full load conditions. Retarded injection has 33.61% brake thermal efficiency while split injection exhibits only 29.06% for 5% EGR flow rates. But higher EGR flow rates of 10% both retarded and split injection has nearly same brake thermal efficiency of 30.11%. Split injection reduced the combustion duration, ignition delay and exhaust gas temperatures for higher EGR flow rates compared to single retarded injection. The present research reveals that there exists an injection pressure map between the design operating pressure and maximum injection pressure. MPFI system under CRDI mode is very effective in reducing the NOx emissions with 10% EGR flow rates for maximum Injection pressure. While retarded SI injection is effective for moderate Injection pressure with the same EGR flow rates.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify