Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Misra, S.C."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Antifouling paint schemes for green SHIPS
    (Elsevier, 2019-01-09) Joshi, M.; Misra, S.C.; Ramesh, U.S.
    Recent advances in antifouling (AF) paints in general prevent fouling in about 95% of the vessel's immersed surface. However the remaining area which amounts to 5% or less of the total area does get fouled. Although this level of fouling has marginal impact on the routine performance of the vessel it is a predominant vector for the transmigration of invasive species which is now a serious environmental concern. Virtually all ocean going vessels are coated with antifouling paints predominant among them are “Self polishing coatings”. CFD analysis conducted on various types of vessels have indicated that there are certain “hotspots” where the polishing rates are exceedingly high and would polish the AF paints at a much faster rate and ultimately result in the failure of the AF coating. A possible solution to this issue is to first identify these hotspots and suitable paint schemes/formulations are to be applied in such areas. An experimental procedure utilizing a “drum-test” apparatus can be used to compute the coating thicknesses based on wall shear stresses. Such painting schemes would prevent the premature failure of the AF coating in general and significantly reduce the risk of transmigration of invasive species in particular.
  • No Thumbnail Available
    Item
    Issues in offshore platform research - Part 1: Semi-submersibles /
    (SNAK, 2010-09-30) Misra, S.C.
    Availability of economic and efficient energy resources is crucial to a nation's development. Because of their low cost and advancement in drilling and exploration technologies, oil and gas based energy systems are the most widely used energy source throughout the world. The inexpensive oil and gas based energy systems are used for everything, i.e., from transportation of goods and people to the harvesting of crops for food. As the energy demand continues to rise, there is strong need for inexpensive energy solutions. An offshore platform is a large structure that is used to house workers and machinery needed to drill wells in the ocean bed, extract oil and/or natural gas, process the produced fluids, and ship or pipe them to shore. Depending on the circumstances, the offshore platform can be fixed (to the ocean floor) or can consist of an artificial island or can float. Semi-submersibles are used for various purposes in offshore and marine engineering, e.g. crane vessels, drilling vessels, tourist vessels, production platforms and accommodation facilities, etc. The challenges of deepwater drilling have further motivated the researchers to design optimum choices for semi-submersibles for a chosen operating depth. In our series of eight papers, we discuss the design and production aspects of all the types of offshore platforms. In the present part I, we present an introduction and critical analysis of semi-submersibles.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify