Journal Articles
Permanent URI for this collectionhttps://dspacenew8-imu.refread.com/handle/123456789/2069
Browse
5 results
Search Results
Item A novel and fast approach for sensing activation energy for reliable health assessment of power transformer /(IEEE, 2022-09-13) Mishra, DeepakActivation energy represents the average rate of interaction between aging by-products and cellulose. Activation energy is a crucial parameter that can be used to identify the remaining life of insulation in high voltage (HV) equipment. Existing noninvasive methods take a significantly longer time to sense activation energy for given insulation. This is primarily due to the volume of data required for such analysis, which generally takes significant time to measure. This work reports a noninvasive and effective approach to predict activation energy of oil–paper insulation using a dielectric response that is recorded for a very short span of time. The proposed method requires polarization current data sensed for a few seconds (15–20 s) to operate. The initial decay rate (DR) of the sensed data is found to be sensitive to the activation energy. This feature of the initial DR is utilized to sense the value of activation energy within a short duration. The proposed technique utilizes the current sensor (present within an electrometer) more efficiently. This facilitates the measurement of a highly accurate polarization profile and ensures reliable activation energy estimation. The proposed methodology has been successfully applied to data collected from a few real-life transformers. Reported results show that the suggested method provides satisfactory results with good accuracy.Item Prediction of insulation sensitive parameters of power transformer using detrended fluctuation analysis based method(IEEE, 2022-06) Dutta, Saurabh; Dey, Jagriti; Mishra, Deepak; Baral, Arijit; Chakravorti, SivajiUtilities prefer to perform a condition-based assessment of power transformer insulation in the least possible shutdown time. It is essential to estimate the values of various insulation condition sensitive performance parameters with higher accuracy. In the present work, a technique for the estimation of performance parameters, moisture content of paper, dissipation factor of the entire oil-paper insulation, paper conductivity, and activation energy is proposed. The evaluation of these parameters using reported techniques requires complete measurement of polarization and depolarization current profile, which requires around 20000 s of measurement time. The present method uses a forecasted polarization current profile obtained from 600 s of measured polarization current data. Detrended Fluctuation Analysis is applied to the forecasted polarization current data obtained from various in-service power transformers to obtain a suitable parameter. It is shown that this parameter maintains well-defined relationships with parameters; moisture content of paper, dissipation factor of oil-paper insulation, paper conductivity, and activation energy. The proposed technique is beneficial for utilities as it eliminates the requirement of measuring depolarization current and return voltage measurement for estimating activation energy.Item Use of interfacial charge for diagnosis and activation energy prediction of oil-paper insulation used in power transformer(IEEE, 2019-01-13) Mishra, Deepak; Dutta, Saurabh; Baral, Arijit; Haque, Nasirul; Chakravorti, SivajiActivation energy is popularly used for the estimation of remaining life of transformer insulation. It is defined as the average rate of all reactions that happen with cellulose. Existing literature shows that the activation energy of oil-paper insulation can be obtained from polarization depolarization current (PDC) and return voltage measurement (RVM) data that are measured at a specific temperature. It is practically difficult to ensure the same measurement temperature for both PDC and RVM data. On the other hand, PDC data and its analysis get influenced by de-trapping current. This de-trapping current is generated by ionic charge carriers that get freed from trap sites during PDC measurement process. Formation of these trap sites is related to physical, chemical reactions that happen at oil-paper interface. This paper proposes a methodology which uses de-trapped charge, dislodged from deep and shallow traps, to assess insulation condition and for the prediction of activation energy. Thus, eliminating the need of RVM data. The proposed method is tested using data collected from various real-life in-service transformers.Item Condition assessment of power transformer insulation using short-duration time-domain dielectric spectroscopy measurement data(IEEE, 2019-10-14) Mishra, Deepak; Baral, Arijit; Haque, Nasirul; ChakravortiUtilities prefer noninvasive methods for assessing the condition of power transformer insulation. Analysis of polarization-depolarization current (PDC) is one such popular method. One such analysis involves the estimation of trapped charge released from the interfacial region of oil-paper insulation. The literature shows that such charges can be reliably used for the diagnosis of transformer insulation. However, such analysis requires a complete profile of PDC. PDC measurement (an offline technique) takes a large amount of time (several hours) to complete. The magnitude of PDC data for a larger value of time is also sensitive to changes in environmental conditions and field noise as its magnitude is low. Hence, a reliable estimation of detrapped charge may require numerous PDC measurements. This situation is not convenient for utilities as it prolongs shut down time. In this article, a method has been proposed which is capable of estimating detrapping charge using PDC data measured for a short span of time. The proposed method is tested on data collected from several real-life in-service transformers.Item A novel and fast approach for sensing activation energy for reliable health assessment of power transformer(IEEE, 2022-09-13) Mishra, Deepak; Baral, Arijit; Chakravorti, SivajiActivation energy represents the average rate of interaction between aging by-products and cellulose. Activation energy is a crucial parameter that can be used to identify the remaining life of insulation in high voltage (HV) equipment. Existing noninvasive methods take a significantly longer time to sense activation energy for given insulation. This is primarily due to the volume of data required for such analysis, which generally takes significant time to measure. This work reports a noninvasive and effective approach to predict activation energy of oil–paper insulation using a dielectric response that is recorded for a very short span of time. The proposed method requires polarization current data sensed for a few seconds (15–20 s) to operate. The initial decay rate (DR) of the sensed data is found to be sensitive to the activation energy. This feature of the initial DR is utilized to sense the value of activation energy within a short duration. The proposed technique utilizes the current sensor (present within an electrometer) more efficiently. This facilitates the measurement of a highly accurate polarization profile and ensures reliable activation energy estimation. The proposed methodology has been successfully applied to data collected from a few real-life transformers. Reported results show that the suggested method provides satisfactory results with good accuracy.