Research Publications
Permanent URI for this communityhttps://dspacenew8-imu.refread.com/handle/123456789/127
Browse
Item A study of ballast water treatment using engine waste heat(Journal of The Institution of Engineers (India): Series C, 2019-04) Balaji, Rajoo.; Yaakob, Omar.; Koh, Kho King.; Adnan, Faizul Amri bin.; Ismail, Nasrudin bin.; Ahmad, Badruzzaman bin.; Ismail, Mohd Arif bin.Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14–33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55–75 C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell–Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species’ mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were[95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.Item Comparision of heat exchanger design for ship ballast water heat treatment system(Jurnal Teknologi, 2015-10) Balaji, Rajoo.; Yaakob, Omar.; Koh, Kho King.; Adnan, Faizul Amri bin.; Ismail, Nasrudin bin.; Ahmad, Badruzzaman bin.; Ismail, Mohd Arif bin.; Vern, Yiow Ru.Sterilisation by heat can be a capital treatment for ballast water and waste heat from ship’s engines will be a good resource. Based on the waste heat availability on an operational tanker, a ballast water treatment system was envisaged including a shipboard heat exchanger for waste heat recovery. To verify the heat availability and the species’ mortalities, test rigs were arranged similar to shipboard arrangement. For assessing the smaller heat exchangers for the tests, designs were developed using Bell-Delaware approaches based on the shipboard heat exchanger design. The thermodynamic and geometric values were computed and the features of the commercially available and fitted heat exchangers were compared with the developed designs. Two commercially procured heat exchangers fitted on two separate engine test rigs were used for tests. The designs of commercially procured heat exchangers were close to the developed designs and were found to be suitable for the tests planned.Item Design verification of heat exchanger for ballast water treatment(Jurnal Teknologi, 2014) Balaji, Rajoo.; Yaakob, Omar.; Adnan, Faizul Amri bin.; Koh, Kho King.Using waste heat from ship’s engines is one of the methods considered for heat treatment of ballast water. For such a system harvesting the engine exhaust heat, a heat exchanger will be vital. Design optimisation of a heater employing exhaust gases of the engine as utility fluid and ballast sea water as the process fluid was achieved using Lagrangian methods, keeping the annual cost as the objective function. Costs for installation, maintenance as also costs for the utility and process fluids were considered. Heat balance data, specific fuel consumption values from a typical operational ship and current fuel costs were considered for the design. The thermodynamic and geometric designs were worked out using computer based software for comparing the designs. Costs were also computed using a different approach for all the designs. Since the amount of heat transferred was specified and the application was limited to a single process, direct cost method was used for the computation. The objective function values obtained from Lagrangian equations were compared with the values obtained from direct cost computations. From the optimal designs, choice was justified based on annual cost, optimum exit temperature of shell side fluid and optimum mass flow of tube side fluid.Item Validation of engine performance for tests on ballast water heat treatment using engine waste heat(International Journal of Marine Engineering Innovation and Research, 2017-12) Balaji, Rajoo.; Yaakob, Omar.; Koh, Kho King.; Adnan, Faizul Amri bin.; Ismail, Nasrudin bin.; Ahmad, Badruzzaman bin.; Ismail, Mohd Arif bin.Heat treatment has been considered as a suitable option for treatment of ballast water. Utilising the waste heat from the diesel engine fresh water and exhaust gases would be an economic option. For recovering the heat from the exhaust gases, heat exchangers are required to be placed in their flow path. The sea water coolant after recovering heat from fresh water has to be directed to this heat exchanger for sterilisation. For testing the effectiveness of these heat recoveries on species’ mortalities, a mini-scale system was arranged and tests were carried out. The engine output and other flow rates were maintained to achieve a temperature range of 55 to 80oC. Data was obtained from the sensors and probes fitted at relevant points. The engine performance was monitored with computerised control equipment. Operational data from five test runs were analysed and verified by two approaches. In the first approach, the heat recovered by the water was compared with the heat lost by the exhaust gases and the maximum variation was observed to be 3.4%. In the second approach, the input energies were computed using two different methods using data values of brake power, thermal efficiency, mass flows, calorific value and specific fuel consumption. A maximum variation of -11% was seen for only one test run, while for other tests the variation was between -0.7% to -1.7%. The values obtained from the connected probes and the computed results were thus validated and further tests on species were carried out.