Research Publications
Permanent URI for this communityhttps://dspacenew8-imu.refread.com/handle/123456789/127
Browse
Item A fast and effective method for assessing insulation condition based on time domain spectroscopy data(IEEE, 2022-01-21) Mishra, Deepak; Pandey, Sandeep; Baral, ArijitA novel methodology is suggested to predict the condition of Oil-paper Insulation (OPI), popularly used in power transformers. The proposed method is based on transient measurement of polarization current data from laboratory samples. Initially, complete polarization current profile is used to formulate an insulation model and then find the rise time of the system. After that, a relation is provided between rise time and measured performance parameters like moisture content(%pm). Further, another relation is suggested between rise time and the initial decay rate of recorded data. Hence, just by knowing the value of the initial decay rate, the value of crucial parameters like %pm can be evaluated using the proposed relationship.Item A method to predict degree of polymerization value of oil-paper insulation using interfacial charge(IEEE, 2029-12-20) Singh, Vijeta; Mishra, Deepak; Baral, Arijit; Chakravorti, SivajiAnalysis based on Degree of Polymerization (DP) value is assumed to provide reliable regarding insulation condition. However, due to the invasive nature of testing, DP value based-analysis is not feasible in practical cases as it requires a paper sample from the in-service unit. Here, an attempt is made to develop a methodology to predict DP value based on non-invasive testing of oil-paper insulation. In this paper, it is found that DP value maintains a well-known relation with interfacial charge (estimated using Polarization Depolarization Current data) as both these parameters are related to the cellulosic condition. The proposed method successfully applied on various laboratory prepared samples containing different moisture content.Item A novel and fast approach for sensing activation energy for reliable health assessment of power transformer(IEEE, 2022-09-13) Mishra, Deepak; Baral, Arijit; Chakravorti, SivajiActivation energy represents the average rate of interaction between aging by-products and cellulose. Activation energy is a crucial parameter that can be used to identify the remaining life of insulation in high voltage (HV) equipment. Existing noninvasive methods take a significantly longer time to sense activation energy for given insulation. This is primarily due to the volume of data required for such analysis, which generally takes significant time to measure. This work reports a noninvasive and effective approach to predict activation energy of oil–paper insulation using a dielectric response that is recorded for a very short span of time. The proposed method requires polarization current data sensed for a few seconds (15–20 s) to operate. The initial decay rate (DR) of the sensed data is found to be sensitive to the activation energy. This feature of the initial DR is utilized to sense the value of activation energy within a short duration. The proposed technique utilizes the current sensor (present within an electrometer) more efficiently. This facilitates the measurement of a highly accurate polarization profile and ensures reliable activation energy estimation. The proposed methodology has been successfully applied to data collected from a few real-life transformers. Reported results show that the suggested method provides satisfactory results with good accuracy.Item A novel method to predict severity of thermal aging and degree of polymerization for reliable diagnosis of dry-type insulation(IEEE, 2022-04) Mishra, Shalini; Baral, Arijit; Mishra, Deepak; Chakravorti, SivajiThe effect of thermal aging on Nomex-paper-based vacuum pressure impregnation (VPI) insulation is reported in this article. The frequency-dependent dielectric loss of Nomex-paper-based VPI dry insulation is affected after significant thermal aging. This variation in dielectric loss of the insulation maintains a good correlation with the duration of thermal aging. A new parameter sensitive to the severity of thermal aging is also introduced. To identify the parameter, the excitation voltage waveform and the corresponding insulation response at a given frequency are required. Determining the parameter does not require denoising of recorded waveforms, reducing the overall computational burden. Based on the newly introduced parameter, a cost-effective method is proposed to predict the dielectric loss and degree of polymerization (DP) in a thermally aged VPI-type dry insulation. The proposed method employs the intermediate frequency range and hence does not require time-consuming low-frequency measurements.Item Analysis of Vibration characteristics and buckling behaviour of rotating Fiber-Graphene-Reinforced Composite Pre-twisted Shells(Transactions of the Canadian Society for Mechanical Engineering, 2025-02-10) Battina, N MalleswararaoThis study presents a novel approach to analyze the vibration and buckling behaviour of pre-twisted fiber-reinforced polymer composite shells reinforced with graphene inclusions. A key novelty lies in incorporating graphene's size-dependent mechanical properties are derived from nanoscopic empirical equations into the analysis. This allows for a more accurate prediction of the overall mechanical response of the composite, particularly at the nanoscale. The Halpin-Tsai model is employed to determine the equivalent elastic constants of the graphene-reinforced matrix, and a finite element formulation based on curved shear deformable shell theory is developed. The model's accuracy is validated against existing experimental or numerical results. Also, this study provides a comprehensive parametric analysis, investigating the influence of key factors such as graphene volume fraction, twist angle, aspect ratio, hub radius, and rotation speed on the vibration frequency and buckling load of the pre-twisted shells. These findings offer valuable insights for the design and optimization of lightweight and high-performance composite structures utilized in aerospace, automotive, and other engineering applications.Item Assessment of interfacial charge accumulation in oil-paper interface in transformer insulation from polarization-depolarization current measurements(IEEE, 2017-06-03) Mishra, Deepak; Haque, Nasirul; Baral, Arijit; Chakravorti, SivajiAccumulation of interfacial space charge in oil-paper interface is a critical issue in insulation diagnostics of transformers. This interfacial charge mainly accumulates due to the conductivity difference of oil and paper. Accumulation of interfacial charge leads to localized field enhancement, which further leads to partial discharges and acceleration in the aging of insulation. Therefore, from the point of view of transformer insulation diagnostics, assessment of interfacial charge is very important. However, it is not easy to estimate interfacial space charge behavior from the transformer diagnostics methods currently in use. In case of Polarization-Depolarization Current (PDC) measurement, a well known method for transformer condition monitoring, the effect of interfacial charge is reflected in the non-linearity of current response during polarization and de-polarization. During de-polarization process, a part of the interfacial charge accumulated during polarization period is absorbed by the electrodes producing a current, which is difficult to separate using conventional linear dielectric theory. In this paper, an attempt has been made to separate this current component from de-polarization current through considering charge de-trapping mechanism. Terming this current component as de-trapping current, its relationship with other parameters of transformer insulation is discussed. The developed methodology has been applied on several practical transformers. It was observed that the time constant of de-trapping current is related to the paper conductivity, oil conductivity, dissipation factor and age of the insulation.Item Compensating the effect of residual dipole energy on dielectric response for effective diagnosis of power transformer insulation(The Institution of Engineering and Technology, 2017-11-28) Mishra, Deepak; Baral, Arijit; Chakravorti, SivajiAnalysis of relaxation current is a widely accepted method for diagnosis of power transformer insulation. The accuracy of such diagnostic tool is dependent on insulation model parameters which are formulated using relaxation current. This implies that the accuracy and hence the reliability of existing insulation diagnosis methods indirectly depends on the accuracy of the recorded polarisation depolarisation current. Sometimes during field measurement relaxation current measurement equipment fails to record proper current, even after application of dc charging voltage. As per utilities, this primarily happens due to improper/loose connections (this cannot be avoided entirely due to the involvement of human factors) and such situation is usually followed by checking and rectifying improper connection. The analysis presented in this study shows that the polarisation current recorded immediately after rectifying the correction is inaccurate and leads to the erroneous diagnosis. Furthermore, it is observed that in these cases, the measured and calculated (using insulation model) values of performance parameters like dissipation factor, polarisation index, and paper-moisture differ by a large extent. This work is aimed at removing the effect of this residual dipole energy introduced during the improper connection phase.Item Condition assessment of power transformer insulation using short-duration time-domain dielectric spectroscopy measurement data(IEEE, 2019-10-14) Mishra, Deepak; Baral, Arijit; Haque, Nasirul; ChakravortiUtilities prefer noninvasive methods for assessing the condition of power transformer insulation. Analysis of polarization-depolarization current (PDC) is one such popular method. One such analysis involves the estimation of trapped charge released from the interfacial region of oil-paper insulation. The literature shows that such charges can be reliably used for the diagnosis of transformer insulation. However, such analysis requires a complete profile of PDC. PDC measurement (an offline technique) takes a large amount of time (several hours) to complete. The magnitude of PDC data for a larger value of time is also sensitive to changes in environmental conditions and field noise as its magnitude is low. Hence, a reliable estimation of detrapped charge may require numerous PDC measurements. This situation is not convenient for utilities as it prolongs shut down time. In this article, a method has been proposed which is capable of estimating detrapping charge using PDC data measured for a short span of time. The proposed method is tested on data collected from several real-life in-service transformers.Item De-noising of time-domain spectroscopy data for reliable assessment of power transformer insulation(The Institution of Engineering and Technology, 2020-04-24) Mishra, Deepak; Baral, Arijit; Chakravorti, SivajiPolarisation–depolarisation current (PDC) measurement and its analysis is a popular technique for assessing the condition of transformer insulation. Owing to the low magnitude of PDC, recording noise-free PDC data from in-situ power transformers is a challenge. Once the relaxation current data get affected by noise, it becomes difficult to formulate insulation model (as recorded data loses its characteristic shape). This further makes the data difficult to analyse and predict insulation condition. In this study, two de-noising techniques are discussed (one is based on Wavelet Transform while the other is based on Stockwell Transform) for eliminating low-frequency non-stationary noise from recorded PDC data. Comparison between these two techniques suggests de-noising using Stockwell Transform is advantageous over wavelet analysis. The proposed methodology is first tested on data recorded from the sample prepared in the laboratory and then on data measured from real-life in-service power transformer.Item Development of wire arc additive manufactured Cu-Si alloy: study of microstructure and wear behavior(Springer Nature, 2023-02-21) Kazmi, Kashif Hasan; Sharma, Sumit K.; Das, Alok Kumar; Mandal, Amitava; Shukla, Amarish KumarWire arc additive manufacturing (WAAM) is an approach to develop unique and sophisticated design products in comparison to other traditional techniques. In the present study, the components of Cu-Si alloy have been developed using WAAM with a robotic gas metal arc welding technique. In this process, the current and voltage varied from 70 to 110 A and 17 to 19 V, respectively. The effect of process parameters on the microstructure, hardness, and wear behavior of components have been studied in details. The results show that the surface roughness of the components reduced with the increase in current and voltage. The microstructure of the uppermost surface of WAAM components shows columnar followed by dendritic with equiaxed morphology. The process parameter also affects the mechanical and wear resistance properties of WAAM components. The results show that the microhardness (from 100.03 to 160.03 HV) and wear resistance of the Cu-Si alloy component increase with the increases in current and voltage.Item Effect of charge accumulated at oil–paper interface on parameters considered for power transformer insulation diagnosis(The Institution of Engineering and Technology, 2018-01-02) Mishra, Deepak; Haque, Nasirul; Baral, Arijit; Chakravorti, SivajiPolarisation and depolarisation current (PDC) measurement and analysis is one of the popular tools for effective diagnosis of power transformer insulation. Normally, it is assumed that polarisation current is the combination of the current due to dipole movement and conduction current. Similarly, the depolarisation current is only due to the relaxation of dipoles. However, it is found that after eliminating the effect of dc conduction from polarisation current the resulting current is not similar to that of measured depolarisation current. This shows some non-linearity is present in the system. This non-linearity occurs due to movement of trapped charge that resides in the interfacial region of oil–paper insulation. This study shows the effect of de-trapping charge on various performance parameters that are used for insulation diagnosis like paper moisture and dielectric dissipation factor (tanδ).Item Effect of charge accumulated at oil-paper interface on zero of transfer function formulated using classical debye model parameters(IEEE, 2017-11) Mishra, Deepak; Pradhan, Arpan Kumar; Baral, Arijit; Haque, Nasirul; Chakravorti, SivajiPDC measurement and analysis is one of widely used tool for reliable diagnosis of power transformer insulation. In different reported methods of analysis it is considered that polarization current is composed of the current due to dipole movement and conduction current. Similarly the depolarization current is assumed to be composed of relaxation of dipoles. However when the dc conduction effect is removed from polarization current it is found the resulting current is not similar to the measured depolarization current. This deviation in both the currents show the presence of nonlinearity in the system. This nonlinearity arises due to migration of trapped charges that reside at the interfacial region of oil-paper insulation. The present paper shows the effect of such free charge on some important performance parameters like paper moisture and zero of Transfer Function of Classical Debye Model.Item Effect of interfacial charge on parameters considered for insulation diagnosis of power transformer(IEEE, 2017-12-02) Mishra, Deepak; Baral, Arijit; Pradhan, Arpan Kumar; Haque, Nasirul; Chakravorti, SivajiOut of various analysis methods available Polarization Depolarization Current (PDC) measurement is extensively used for monitoring of oil-paper insulation health. In such case, Classical Debye Model (CDM) is used for analysis of recorded PDC data. CDM has limited capacity to simulate the effect of interfacial charge. Due to this interfacial charge, nonlinearity arises in the system which adversely affects the insulation. Conductivity difference between oil and paper is the main reason behind this interfacial charge which creates nonlinearity in system. In the present work, the effect of interfacial charge is analyzed on some of the performance parameters used for diagnosis of insulation like peak value of return voltage spectrum and paper conductivity.Item Effect of measurement temperature of insulation poles used for assessment of oil-paper insulation(IEEE, 2018-12-07) Verma, R.; Mishra, Deepak; Baral, Arijit; Chakravorti, SivajiAnalysis of Polarization-depolarization current (PDC) data is a popular technique used for assessing condition of oil-paper insulation. Oil-paper insulation deteriorates with aging during the operational life of the power equipment. In order to get information regarding the insulation condition; different performance parameters are used which can be estimated from PDC data. These parameters include paper moisture (%pm), Dissipation factor (%tanδ) and paper conductivity (σ paper ). In addition to these parameters, insulation poles can also be used for insulation diagnosis. Recently, it has gained popularity in field of insulation diagnosis as it does not depend on physical geometry of insulation. In this paper, the effect of measurement temperature on insulation poles has been analysed. Also, an attempt has been made to establish a relation between insulation poles and other insulation sensitive parameters such as %pm, σ paper and %tan δ.Item Effect of measurement temperature on interfacial charge freed from deep traps located at the interface of oil-paper insulation(IEEE, 2018-12-07) Dey, Debangshu; Sarkar, A.; Pal, Sayantan; Kumar, A.; Mishra, Deepak; Baral, Arijit; Haque, Nasirul; Chakravorti, SivajiAccumulation of interfacial charge creates local field distortion during insulation response measurement. Furthermore, such localized field enhancement affects the interaction between polar compounds present within oil-paper insulation and in turn affects its aging process. By getting sufficient trap energy (normally by thermal oscillation) these trapped charges dislocate from their locations and contribute in depolarization current. These interfacial charges include charges dislocated from shallow and deep sites at interfacial region. The charge residing at deep locations takes more time to dislodge themselves compared to charge residing at shallow sites. As dipole present in cellulose has large relaxation time, there might be some relation between deep charge and paper insulation sensitive parameters. In this work, effects of temperature on deep traps are analyzed. Results reported in this paper shows that magnitude of charge freed from deep locations maintains a correlation with measurement temperature and paper conductivity.Item Enhancement of heat transfer of laminar flow of viscous oil through a circular tube having integral axial rib roughness and fitted with helical screw-tape inserts(Begell House Inc., 2012-01-01) Saha, SujoyThe experimental friction factor and Nusselt number data for laminar flow through a circular duct having integral axial rib roughness and fitted with helical screw-tape inserts have been presented. Predictive friction factor and Nusselt number correlations have also been presented. The thermohydraulic performance has been evaluated. The major findings of this experimental investigation are that the helical screw-tape inserts in combination with integral axial rib roughness perform better than the individual enhancement technique acting alone for laminar flow through a circular duct up to a certain value of the fin parameter.Item Estimation of de-trapped charge for diagnosis of transformer insulation using short-duration polarisation current employing detrended fluctuation analysis(The Institution of Engineering and Technology, 2020-10-01) Dutta, Saurabh; Mishra, Deepak; Baral, Arijit; Chakravorti, SivajiResearchers have shown that the value of charge carriers, de-trapped from the oil–paper interface of power transformer insulation, is useful in carrying out the diagnosis. However, the evaluation of the de-trapped charge requires the analysis of polarisation–depolarisation currents. Being an off-line time-consuming process, the measurement and analysis of polarisation and depolarisation current (PDC) data are not practically advantageous. The study presents a detrended fluctuation analysis-based technique to estimate the magnitude of normalised de-trapped charge using the polarisation current measured for a short duration. Using the proposed technique, the requirement of measuring the complete PDC data, for diagnosis purposes, can be eliminated. Further, the technique also eliminates the requirement of depolarisation current which in turn facilitates a reduction in equipment shutdown time. The applicability of the proposed technique is tested on the data obtained from several real-life power transformers.Item Estimation of paper conductivity from short duration polarisation–depolarisation current for diagnosis of power transformer(The Institution of Engineering and Technology, 2019-07-12) Mishra, Deepak; Haque, Nasirul; Baral, Arijit; Chakravorti, SivajiThe value of paper conductivity provides quantitative evaluation of transformer insulation health. However, proper identification of paper conductivity requires complete profile of polarisation–depolarisation current (PDC). PDC measurement being a time-consuming offline process generally takes several hours to complete. Furthermore, magnitude of PDC becomes very low at larger value of time, which makes it sensitive to changes in environmental conditions and field noise. Hence, accuracy of paper conductivity identification can be ensured by conducting multiple measurements. This in-turn prolongs shutdown time of equipment and become less advantageous to utilities. Here, a method is proposed which is capable of estimating paper conductivity using PDC data recorded for only 800 s. The proposed technique is tested on data collected from several real-life in-service transformers. In order to illustrate the accuracy of the proposed technique, paper conductivities (calculated from short duration PDC) were compared with those computed using PDC measured for 10,000 s.Item Estimation of performance parameters using charge freed from deep traps located at interfacial region of oil-paper insulation(IEEE, 2019-11-21) Mishra, Deepak; Verma, R.; Baral, Arijit; Haque, Nasirul; Chakravorti, SivajiDe-trapped charge dislodged from interfacial region of oil-paper insulation can be used as an effective insulation sensitive parameter. Over time, various physiochemical reactions takes place at interfacial region and consequently results in the formation of different trap sites (deep and shallow). Charges which resides at these traps sites are de- trapped after gaining sufficient energy. In present analysis, it is found that charge dislocated from deep traps maintains some specific type of relationship with different insulation sensitive parameters. Before using de-trapped (dislodge from deep traps) as an effective insulation sensitive parameter the effect of geometry must be reduced, as amount of de-trapped charge depends on the area of interfacial region which is not identical for all units. Result presented in this paper shows that use of geometric capacitance for normalization purposes significantly reduces the effects of insulation physical dimensions on de- trapped charge. The capability of deep charge (normalized using dc insulation resistance and geometrical capacitance) is also compared in the present work.Item Evaluation of response characteristics using sensitivity analysis and TLBO technique of powder mixed wire EDM of Ti6Al4V alloy(Elsevier, 2023-11-29) Chakraborty, SadanandaThe development of Powder Mixed Wire Electric Discharge Machining (PMWEDM) aims to enhance both precise dimension and surface quality, making it a more efficient method for the cost-effective production of precise dies and tools compared to conventional Wire Electric Discharge Machining (WEDM. This approach effectively eliminates the need for secondary operations. The present study is focused on the parametric influence of surfactant with powder mixed WEDM process parameters during die corner cutting on Ti6Al4V material in the presence of surfactant and powder with dielectric. A sensitivity analysis was conducted to determine the significant influence of machining parameters and powder properties in conjunction with the dielectric. To empirically explore these variables, a central composite full factorial design based on response surface methodology was utilized. The design involved varying the pulse on-time (Ton) within the range of 30–90 µs, pulse off-time (Toff) within 3–11 µs, gap voltage (GV) within 40–80 V, and powder concentration (PC) within 2–10 g/L. The mathematical model was developed to predict the responses such as corner inaccuracy (CI) and surface roughness (SR) using RSM. The results conclude that the sensitiveness of powder concentration is highest. Apart from this, positive sensitiveness towards surface roughness is determined for three inputs: pulse on time, pulse off time, and powder concentration. In comparison, powder concentration shows positive sensitiveness towards corner inaccuracy. An artificial intelligence technique namely, Teaching learning-based optimization (TLBO) algorithm has been used to determine the best output. The minimum output for both responses, i.e. corner inaccuracy of 12982.67 µm2 and surface roughness of 1.199 µm, was obtained using TLBO technique. Further improvement for surface finish and corner accuracy in addition powder (3 g/L) with dielectric in WEDM process is found to be a value of 50.77% and 23.01%, respectively, compared with conventional WEDM process. SEM was employed to observe and analyze the topographical changes that occurred during powder mixed and without powder mixed in WEDM process.
- «
- 1 (current)
- 2
- 3
- »