Research Publications

Permanent URI for this communityhttps://dspacenew8-imu.refread.com/handle/123456789/127

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Influence of temperature on interfacial charge of power transformer insulation
    (The Institution of Engineering and Technology, 2019-06-21) Dutta, Saurabh; Mishra, Deepak; Haque, Nasirul; Pradhan, Arpan Kumar; Baral, Arijit; Chakravorti, Sivaji
    One of the popular methods for insulation diagnosis is measurement and analysis of polarisation–depolarisation current (PDC). During normal operation, charges get confined at the interface of oil–paper insulation. A part of these accumulated charges get absorbed in depolarisation current and contribute to the overall PDC data. The process through which charges are released from their confinement is known as charge de-trapping, which is highly influenced by thermal energy content of the insulation and hence by measurement temperature. In the current work, an effort has been made to investigate the effect of measurement temperature on de-trapped charge. Two samples are prepared and analysed in the laboratory at different temperatures for this purpose. This is followed by analysis of data collected from several real-life power transformers. Related analysis presented here suggests that measurement temperature of the system plays an important role in determining the amount of de-trapped interfacial charge during PDC measurement.
  • Item
    Estimation of de-trapped charge for diagnosis of transformer insulation using short-duration polarisation current employing detrended fluctuation analysis
    (The Institution of Engineering and Technology, 2020-10-01) Dutta, Saurabh; Mishra, Deepak; Baral, Arijit; Chakravorti, Sivaji
    Researchers have shown that the value of charge carriers, de-trapped from the oil–paper interface of power transformer insulation, is useful in carrying out the diagnosis. However, the evaluation of the de-trapped charge requires the analysis of polarisation–depolarisation currents. Being an off-line time-consuming process, the measurement and analysis of polarisation and depolarisation current (PDC) data are not practically advantageous. The study presents a detrended fluctuation analysis-based technique to estimate the magnitude of normalised de-trapped charge using the polarisation current measured for a short duration. Using the proposed technique, the requirement of measuring the complete PDC data, for diagnosis purposes, can be eliminated. Further, the technique also eliminates the requirement of depolarisation current which in turn facilitates a reduction in equipment shutdown time. The applicability of the proposed technique is tested on the data obtained from several real-life power transformers.