Research Publications
Permanent URI for this communityhttps://dspacenew8-imu.refread.com/handle/123456789/127
Browse
4 results
Search Results
Item Prediction of insulation sensitive parameters of power transformer using detrended fluctuation analysis based method(IEEE, 2022-06) Dutta, Saurabh; Dey, Jagriti; Mishra, Deepak; Baral, Arijit; Chakravorti, SivajiUtilities prefer to perform a condition-based assessment of power transformer insulation in the least possible shutdown time. It is essential to estimate the values of various insulation condition sensitive performance parameters with higher accuracy. In the present work, a technique for the estimation of performance parameters, moisture content of paper, dissipation factor of the entire oil-paper insulation, paper conductivity, and activation energy is proposed. The evaluation of these parameters using reported techniques requires complete measurement of polarization and depolarization current profile, which requires around 20000 s of measurement time. The present method uses a forecasted polarization current profile obtained from 600 s of measured polarization current data. Detrended Fluctuation Analysis is applied to the forecasted polarization current data obtained from various in-service power transformers to obtain a suitable parameter. It is shown that this parameter maintains well-defined relationships with parameters; moisture content of paper, dissipation factor of oil-paper insulation, paper conductivity, and activation energy. The proposed technique is beneficial for utilities as it eliminates the requirement of measuring depolarization current and return voltage measurement for estimating activation energy.Item Influence of temperature on interfacial charge of power transformer insulation(The Institution of Engineering and Technology, 2019-06-21) Dutta, Saurabh; Mishra, Deepak; Haque, Nasirul; Pradhan, Arpan Kumar; Baral, Arijit; Chakravorti, SivajiOne of the popular methods for insulation diagnosis is measurement and analysis of polarisation–depolarisation current (PDC). During normal operation, charges get confined at the interface of oil–paper insulation. A part of these accumulated charges get absorbed in depolarisation current and contribute to the overall PDC data. The process through which charges are released from their confinement is known as charge de-trapping, which is highly influenced by thermal energy content of the insulation and hence by measurement temperature. In the current work, an effort has been made to investigate the effect of measurement temperature on de-trapped charge. Two samples are prepared and analysed in the laboratory at different temperatures for this purpose. This is followed by analysis of data collected from several real-life power transformers. Related analysis presented here suggests that measurement temperature of the system plays an important role in determining the amount of de-trapped interfacial charge during PDC measurement.Item Estimation of de-trapped charge for diagnosis of transformer insulation using short-duration polarisation current employing detrended fluctuation analysis(The Institution of Engineering and Technology, 2020-10-01) Dutta, Saurabh; Mishra, Deepak; Baral, Arijit; Chakravorti, SivajiResearchers have shown that the value of charge carriers, de-trapped from the oil–paper interface of power transformer insulation, is useful in carrying out the diagnosis. However, the evaluation of the de-trapped charge requires the analysis of polarisation–depolarisation currents. Being an off-line time-consuming process, the measurement and analysis of polarisation and depolarisation current (PDC) data are not practically advantageous. The study presents a detrended fluctuation analysis-based technique to estimate the magnitude of normalised de-trapped charge using the polarisation current measured for a short duration. Using the proposed technique, the requirement of measuring the complete PDC data, for diagnosis purposes, can be eliminated. Further, the technique also eliminates the requirement of depolarisation current which in turn facilitates a reduction in equipment shutdown time. The applicability of the proposed technique is tested on the data obtained from several real-life power transformers.Item Use of interfacial charge for diagnosis and activation energy prediction of oil-paper insulation used in power transformer(IEEE, 2019-01-13) Mishra, Deepak; Dutta, Saurabh; Baral, Arijit; Haque, Nasirul; Chakravorti, SivajiActivation energy is popularly used for the estimation of remaining life of transformer insulation. It is defined as the average rate of all reactions that happen with cellulose. Existing literature shows that the activation energy of oil-paper insulation can be obtained from polarization depolarization current (PDC) and return voltage measurement (RVM) data that are measured at a specific temperature. It is practically difficult to ensure the same measurement temperature for both PDC and RVM data. On the other hand, PDC data and its analysis get influenced by de-trapping current. This de-trapping current is generated by ionic charge carriers that get freed from trap sites during PDC measurement process. Formation of these trap sites is related to physical, chemical reactions that happen at oil-paper interface. This paper proposes a methodology which uses de-trapped charge, dislodged from deep and shallow traps, to assess insulation condition and for the prediction of activation energy. Thus, eliminating the need of RVM data. The proposed method is tested using data collected from various real-life in-service transformers.