Research Publications

Permanent URI for this communityhttps://dspacenew8-imu.refread.com/handle/123456789/127

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Evaluation of river regulatory measures in hughly estuary using tidal asymmetry characteristics
    (IEEE, 2006) Sivakholundu, K. M.; Kathiroli S.; Mani J. S.; Idichandy V. G.
    Tidal asymmetry has a profound effect on estuarine hydrodynamics and sedimentation pattern. The information of tidal asymmetry can be a useful tool to evaluate the flow pattern in shallow estuary and characterize the dominance of flood or ebb flow. The effects of features (like obstructions, depressions, etc.) and discharge variation in a theoretical channel section is simulated to quantify the parameters of tidal asymmetry. A set of proposed river regulatory measures in a shallow estuary (Hughly, India) was taken up for evaluation using tidal asymmetry parameters to check whether this may be used as additional tool. The indications provided (flood dominance and hence sediment importing regime) with asymmetry parameters do match with field conditions (based on bathymetry survey data). The asymmetry parameters may be put to use to evaluate the change in flood/ebb dominance in relative terms in a given section.
  • Item
    Estuarine channel stability assessment through tidal asymmetry parameters
    (Journal of Coastal Research, 2009-03) Sivakholundu, K. M.; Mani J. S.; Idichandy V. G.; Kathiroli S.
    In an estuarine channel the tidal asymmetry, sediment transport, and morphology are interconnected. To maintain a stable channel, we need to take tidal asymmetry into account. A relationship connecting tidal asymmetry and sediment transport rate has been used to evaluate the relative merits of channel modification through numerical simulations. Two criteria have been identified for ensuring the channel stability: (a) maintaining ebb dominance and (b) minimizing the spatial gradient in the net sediment transport function ⟨q⟩. Using these criteria for a test case, we have evaluated Hooghly estuary (east coast, India), where heavy sedimentation is experienced and a permanent solution is needed. The approach provides better insight into the sedimentation pattern in a semidiurnal tidal process in a shallow estuary with braided channels. Among the factors affecting tidal asymmetry, the relative phase difference (β) between M2 and M4 current constituents has a major influence and is thus responsible for the sedimentation pattern. Through numerical study it was found that a combination of deepened, uniform channel with enhanced ebb flow led to a favorable β, indicating less deposition.