Numerical computation of Boil off Rate (BoR) in shipboard LNG tanks

dc.campusKolkata
dc.contributor.authorEswara, Arun Kishore
dc.contributor.authorSandilya, P.
dc.date.accessioned2023-07-26T04:50:36Z
dc.date.accessioned2025-02-05T16:38:06Z
dc.date.available2023-07-26T04:50:36Z
dc.date.issued2022
dc.description.abstractNatural gas is an environment-friendly fuel and a raw material for many chemicals. Its offshore transport is economical when the gas is transported in liquefied form as Liquefied Natural Gas (LNG) over distances (exceeding 2000 kilometers) by sea. LNG is stored at near-atmospheric pressure and about 112 K in these tanks. Heat inleak from the ambient into the stored LNG causes considerable boil-off of the LNG due to low latent heat of vaporization of LNG. Boil off Gas (BoG) generation should be reduced to minimize the loss of LNG as well as environmental pollution. Determination of the boil-off rate (BoR) poses a challenge because it involves interplay of multitude of phenomena and considerations, like liquid sloshing that is likely to generate heat and increases the interfacial area between the liquid and the ullage, variation in LNG composition due to BoG generation, and thermal stratification. In this paper we present a numerical analysis of the BoG generation, including some of the effects just mentioned. A model including transport phenomena based-equations and thermodynamic phase relations has been developed for this purpose.The simulation results would help in carrying out more in depth study of BoG generation that is useful in the design and operation of the prismatic membrane tanks.
dc.identifier.citationA K Eswara and P Sandilya 2022 IOP Conf. Ser.: Mater. Sci. Eng. 1240 012033
dc.identifier.urihttps://dspacenew8-imu.refread.com/handle/123456789/1958
dc.language.isoen_US
dc.publisherIOP Publishing
dc.schoolSchool of Marine Engineering and Technology
dc.subjectBoil-off Rate
dc.titleNumerical computation of Boil off Rate (BoR) in shipboard LNG tanks
dc.typeConference Proceeding

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Eswara_2022_IOP_Conf._Ser.__Mater._Sci._Eng._1240_012033.pdf
Size:
2.97 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: