Numerical study on maneuvering a container ship in shallow water waves /

No Thumbnail Available

Date

2023-09-15

Journal Title

Journal ISSN

Volume Title

Publisher

IJIRSS

Abstract

Numerous practical and mathematical techniques have been piloted to study ships’ behavior in deep water conditions with and without waves, and shallow water conditions without waves, while only limited investigations have been carried out to assess ships’ behavior in shallow waters with wave conditions as the flow around the stern regionandappendages and the interaction effects are intricate. Therefore, this study attemptsto understand the infrequently explored subset of a vessel’s behavior in regular waves in shallow water conditions(channel depth to ship draft ratio taken as 1.5). A container ship (S175) model scaledat 1:36 was the subject of a numerical study inwhich it was subjected to static and dynamic maneuver simulations in head sea conditions. The waves were induced using the dispersion relationship of waves in a given depth. The trends of forces and moments acting on the hull while undergoing maneuvering motions were obtained using a smooth particle hydrodynamics-based computational fluid dynamics solver. The resulting periodic trends of forces and moments were analyzed using the Fourier series method to extract the Fourier coefficients and,in turn,calculate the hydrodynamic derivatives. The trajectories in turning circle and zigzagmaneuverswere also simulated using a MATLAB code. The results demonstrate an increase in trajectory parameters and improvement in counter maneuverability owing to the complex flow physics around the hull whenencountering regular waves in shallow water conditionscompared to waves in deep watersand a lack of waves in shallow waters.

Description

Keywords

CFD, Fourier series, Maneuverability, Regular waves, Shallow water wave conditions, Trajectories

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By