Conference Proceedings
Permanent URI for this collectionhttps://dspacenew8-imu.refread.com/handle/123456789/1718
Browse
2 results
Search Results
Item Analysis of antifouling paints using drum test apparatus(RINA, 2015-12) Joshi, Madhu; Mukherjee, A.; Misra, S. C.; Ramesh, U. S.Ship has been recognized as a major factor in introduction of non-native and harmful organisms which causes deleterious effects on the performance of the vessel. More than 70% of Invasive species worldwide have found to be due to hull fouling. To mitigate fouling, underwater parts of the vessels are coated with antifouling paints. Antifouling paints provide foul-free hulls up to a maximum of 95 % of the vessels underwater area. There are a number of types of these paints but “self-polishing coatings” are predominantly preferred by the shipping industry. In these types of coatings, a thin layer of biocide containing paint (typically 2 to 5 microns/month) is leached or “polished” away. This polishing action primarily depends on the hydrodynamic surface forces on the vessels hull. The higher the fluid velocity, the higher are the polishing rate. Certain areas of the vessel such as near the bow, stern, etc experience higher fluid velocity and therefore higher polishing rates thereby resulting in premature fouling. Conversely, areas where the flow rates are considerably smaller would experience lesser polishing rates which would result in insufficient amount of biocides being delivered which would again result in premature fouling. In order to study and estimate the polishing rates of Anti Fouling paint we have designed, fabricated a rotating drum test facility .Wall shear stress are to be calculated by CFD methodsItem Comparative study for resistance of a bulk carrier using CFD(Altair Technology Conference, 2013-07) Bhavaraju, Pradeep J. S.; Revathi, Ch.; Ramesh, U. S.The hydrodynamic performance of a vessel depends on the shape of the hull. Therefore it is important that the hull form be carefully designed to minimize pressure distribution and resistance. A CFD analysis for the full scale bulk carrier is made to estimate the resistance at different velocitie . A 3D steady state, incompressible viscous flow analysis for 8, 12 and 14 knots at 7.8 m draft level is executed for zero offset flow angle using the CFD package ACUSOLVE and the results are compared with experimentally obtained model test results. An attempt is made to simulate free surface interaction between the bulk carrier and water using the Smooth Particle Hydrodynamics method available in RADIOSS solver.